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Abstract
Shrock and Wu have given numerical values for the exponential growth rate of
the number of spanning trees in Euclidean lattices. We give a new technique
for numerical evaluation that gives much more precise values, together with
rigorous bounds on the accuracy. In particular, the new values resolve one of
their questions.
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1. Introduction

Since the time of Kirchhoff (1847), physicists and mathematicians have been interested in
enumerating spanning trees. One aspect of this endeavor has been to evaluate or to estimate
asymptotics of the growth rate of the number of spanning trees in large graphs. Additional
interest in the asymptotic growth rate arises in ergodic theory, since the exponential rate is
also the entropy of a natural and an important system, the so-called uniform spanning forest.
See Pemantle (1991), Burton and Pemantle (1993), Benjamini et al (2001), Lyons (1998)
and Lyons (2003) for explanations and information about the uniform spanning forest. Some
modern enumeration efforts include Burton and Pemantle (1993), Shrock and Wu (2000) and
Lyons (2003); see also the references therein. In many cases, one can express the main term of
the asymptotics by an integral formula. For example, if τ(G) denotes the number of spanning
trees of a graph G and if Gn are the graphs induced by cubes of side length n in the hypercubic
lattice Z

d , then it is well known (and rederived in both Burton and Pemantle (1993) and Shrock
and Wu (2000)) that the thermodynamic limit

hd := lim
n→∞

1

nd
log τ(Gn)
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can be expressed as

hd =
∫

T
d

log

(
2d − 2

d∑
i=1

cos 2πxi

)
dx = log(2d) +

∫
T

d

log

(
1 − 1

d

d∑
i=1

cos 2πxi

)
dx.

(1.1)

It is also well known (due to its connection with the dimer problem) that h2 = 4G/π , where
G := ∑∞

k=0(−1)k/(2k + 1)2 is Catalan’s constant (see, e.g., Kasteleyn (1961) or Montroll
(1964)). No values of hd for any d � 3 are known in simple terms of other known constants
and functions. Shrock and Wu (2000) evaluated these integrals in higher dimensions by
numerical methods and found one particularly intriguing value: h4 = 2.0000(5). They
suggested that h4 may be exactly 2, which would be quite surprising. Indeed, it would be
extraordinary for a natural system without parameters to have a natural-log entropy that is a
non-zero integer. This would have been the first such example to our knowledge. However,
we shall see that h4 is extraordinarily close to 2, but not, in fact, exactly 2. We shall also give
more precise values for other hd with rigorous bounds on their accuracy.

The numerical evaluation of hd is problematic if one wants to use the formula (1.1), due to
the difficulty of accurate integration in higher dimensions. Therefore, Shrock and Wu (2000)
gave an interesting large-d asymptotic expansion of hd to order 1/d6; we have given more
terms below to show that not all coefficients are positive, as one might otherwise believe, and
to illustrate that this is indeed only an asymptotic expansion, not a convergent series:

hd = log(2d) −
[

1

4d
+

3

16d2
+

7

32d3
+

45

128d4
+

269

384d5
+

805

512d6
+

3615

1024d7

+
23 205

4096d8
− 144 963

10 240d9
− 2 187 031

8192d10
− 40 225 409

16 384d11
− 1 277 353 077

65 536d12

− 66 817 216 455

458 752d13
− 271 891 453 119

262 144d14
+ O

(
1

d15

)]
.

However, it is difficult to know how many terms of this expansion to use; Shrock and Wu
(2000) used this series to report h5 = 2.243 and h6 = 2.437. For smaller d, Shrock and Wu
(2000) used numerical integration to find that h3 = 1.6741481(1) and that h4 = 2.0000(5).
However, the accuracy of h3 is off by several orders of magnitude.

To obtain greater accuracy and enable us to prove that h4 �= 2, we shall use a new formula,
namely,

hd = log(2d) −
∞∑

k=1

pd(k)/k (1.2)

where pd(k) is the probability that simple nearest-neighbour random walk on the hypercubic
lattice Z

d returns to its starting point after k steps. (A generalization of this formula is due to
Lyons (2003).) Even this formula is slightly problematic to use, since pd(k) is the sum of a
large number of binomial coefficients for large k. Because of the large number of small terms, it
is important to calculate the sum as an exact rational before converting to a real approximation.
Fortunately, there is a simple recursion formula that enables quicker computation. In addition,
we explain how to estimate the tail of the series in (1.2).

In the remainder of this paper, we first state our numerical results and then derive the simple
but crucial (1.2). Next, we explain how to compute pd(k) quickly and how to approximate
the error, and finally prove rigorous bounds. We shall also briefly discuss body-centred cubic
lattices. We end by discussing an alternative approach that was brought to our attention after
a first version of this paper was submitted.
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2. Results

The numerical results are, to an accuracy we believe includes all reported digits, in the
following table:

d hd

3 1.673 389 302 97
4 1.999 707 644 517
5 2.242 488 059 811 3
6 2.436 626 962 000 71
7 2.598 676 304 2
8 2.737 867 663 85
9 2.859 910 142 340

10 2.968 594 484 443
11 3.066 571 824 248

d hd

12 3.155 771 429 282 4
13 3.237 642 155 184 2
14 3.313 300 318 027 25
15 3.383 624 540 390 254
16 3.449 318 935 201
17 3.510 956 551 787 645
18 3.569 010 065 284 79
19 3.623 873 963 844 55
20 3.675 880 916 712 57

These arise as follows. To prove (1.2), use the Maclaurin series for log(1 − z) to find∫
T

d

log

(
1 − 1

d

d∑
i=1

cos 2πxj

)
dx = −

∞∑
k=1

1

k

∫
T

d

[
1

d

d∑
i=1

cos 2πxj

]k

dx

= −
∞∑

k=1

1

k

∫
T

d

[
1

2d

d∑
i=1

(e2π ixj + e−2π ixj )

]k

dx

= −
∞∑

k=1

1

k
pd(k).

Clearly, we have pd(k) = 0 for k odd and p1(2k) = (2k

k

)/
22k . It is well known that

p2(2k) = p1(2k)2 (e.g., one step of a random walk in Z
2 can be made by taking one step in

each of the directions ±(1/2, 1/2) and ±(1/2,−1/2), independently). For fast computation of
other return probabilities, write f (d, k) := (2d)2kpd(2k) for the number of nearest-neighbour
walks of length 2k in Z

d that start and end at the origin. Such a walk has the property that
its projection to the first d1 coordinates also starts and ends at the origin, while the number of
steps in the first d1 directions may be any even number between 0 and 2k. Similar reasoning
shows that

f (d1 + d2, k) =
k∑

r=0

(
2k

2r

)
f (d1, r)f (d2, k − r).

This allows one to reduce the computation of pd(•) to the values of p�d/2�(•) and p�d/2�(•).
Once we have these values, it is simple to compute partial sums for (1.2). Since all terms

of the series are positive, each such partial sum gives a rigorous upper bound for the true value
of hd . Merely summing the first 13 terms of the series in (1.2) for d = 4 gives a rigorous
proof that h4 < 2. To get a lower bound for hd , it suffices to bound above the remainder. It is
well known (see, e.g., Spitzer (1976), section 7) that

pd(2k) ∼ 2

(
d

4πk

)d/2

. (2.1)

A more precise approximation is

pd(2k) ≈ 2

(
d

4πk

)d/2 (
1 − d

8k

)
(2.2)
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as shown by Ball and Sterbenz (2003). As this suggests, we believe that the right-hand side
of (2.1) is actually larger than the left-hand side; indeed, this appears to be true for all d and
k, not merely for large k, though it has been proved only for large k and for small d. That is,
we have

pd(2k) � 2

(
d

4πk

)d/2

(2.3)

for all k when 1 � d � 6 and for all large k (if not all k) when d � 7; see Ball and Sterbenz
(2003). Since the sum over k � r , any r > 0, of the right-hand side of either (2.1) or
(2.2) can be expressed via the Hurwitz zeta function, for which Euler–Maclaurin summation
approximations are readily available, we obtain the very precise values reported in the tables
above by summing relatively few terms. Excellent accuracy is already available after just 10
terms, but we have used 1000 terms for 3 � d � 6, 100 terms for 7 � d � 10 and 80 terms for
11 � d � 20. In addition, by using (2.3) and partial sums of 1000 terms, we get the rigorous
bounds

1.673 389 302 417 697 8 � h3 � 1.673 391 759 672 088 4

1.999 707 644 500 457 1 � h4 � 1.999 707 695 110 413 8

2.242 488 059 810 819 � h5 � 2.242 488 061 072 406 5

2.436 626 962 000 695 � h6 � 2.436 626 962 036 923 4.

One can use similar estimates to improve the precision of the asymptotics for body-centred
hypercubic lattices. As shown by Shrock and Wu (2000), the exponential growth rate of the
number of spanning trees in d dimensions is

hbcc
d = d log 2 − 1

2

∞∑
k=1

1

k
p1(k)d . (2.4)

It is straightforward to show that

p1(2k) � 2

(
1

4πk

)1/2 (
1 − 1

8k

)
(2.5)

by use of Stirling’s approximation. We sum 1000 terms of (2.4) and bound the remainder.
Using (2.3) for a lower bound and (2.5) for an upper bound, we find

1.990 191 417 846 6 � hbcc
3 � 1.990 191 417 847 2

2.732 957 535 468 933 � hbcc
4 � 2.732 957 535 468 945 5.

These agree with the estimates of Shrock and Wu (2000), but give about 3 times as many
digits.

After a first version of this paper was submitted for publication, Alan Sokal kindly brought
to our attention some related calculations by Sokal and Starinets (2001). Up to a constant, the
entropy hd studied here is equal to the free energy gd(1/d) studied there (see equation (A.2)
of their paper). Their formula (A.6) shows, then, that

hd = log(2d) +
∫ ∞

0

e−t

t
[1 − I0(t/d)d ] dt (2.6)

where I0 is the modified Bessel function. In this way hd can be estimated by numerical
integration in only one dimension, which can be accomplished very quickly. The disadvantage,
however, is that the integrand decays rather slowly. As noted in appendix A.2 of Sokal and
Starinets (2001), one can improve the precision dramatically by numerical integration up to
some cutoff, then symbolic integration of the tail with an asymptotic formula replacing I0.
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Even so, not all the numerical values reported in Sokal and Starinets (2001) are correct in all
their digits, as can be seen by comparison with our tables and our rigorous bounds. The second
disadvantage of (2.6) is that it is less straightforward to provide rigorous bounds. For this
purpose, one has to treat carefully the technique of numerical integration, as well as evaluation
and bounding of I0. Some of this is discussed in appendix B of Hara and Slade (1992). By
comparison, our technique requires only the calculation of rational numbers, as well as one
simple logarithm calculation.
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